164 research outputs found

    The generalized shrinkage estimator for the analysis of functional connectivity of brain signals

    Full text link
    We develop a new statistical method for estimating functional connectivity between neurophysiological signals represented by a multivariate time series. We use partial coherence as the measure of functional connectivity. Partial coherence identifies the frequency bands that drive the direct linear association between any pair of channels. To estimate partial coherence, one would first need an estimate of the spectral density matrix of the multivariate time series. Parametric estimators of the spectral density matrix provide good frequency resolution but could be sensitive when the parametric model is misspecified. Smoothing-based nonparametric estimators are robust to model misspecification and are consistent but may have poor frequency resolution. In this work, we develop the generalized shrinkage estimator, which is a weighted average of a parametric estimator and a nonparametric estimator. The optimal weights are frequency-specific and derived under the quadratic risk criterion so that the estimator, either the parametric estimator or the nonparametric estimator, that performs better at a particular frequency receives heavier weight. We validate the proposed estimator in a simulation study and apply it on electroencephalogram recordings from a visual-motor experiment.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS396 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States

    Full text link
    Motivated by the problem of predicting sleep states, we develop a mixed effects model for binary time series with a stochastic component represented by a Gaussian process. The fixed component captures the effects of covariates on the binary-valued response. The Gaussian process captures the residual variations in the binary response that are not explained by covariates and past realizations. We develop a frequentist modeling framework that provides efficient inference and more accurate predictions. Results demonstrate the advantages of improved prediction rates over existing approaches such as logistic regression, generalized additive mixed model, models for ordinal data, gradient boosting, decision tree and random forest. Using our proposed model, we show that previous sleep state and heart rates are significant predictors for future sleep states. Simulation studies also show that our proposed method is promising and robust. To handle computational complexity, we utilize Laplace approximation, golden section search and successive parabolic interpolation. With this paper, we also submit an R-package (HIBITS) that implements the proposed procedure.Comment: Journal of Classification (2018

    Intrinsic data depth for Hermitian positive definite matrices

    Full text link
    Nondegenerate covariance, correlation and spectral density matrices are necessarily symmetric or Hermitian and positive definite. The main contribution of this paper is the development of statistical data depths for collections of Hermitian positive definite matrices by exploiting the geometric structure of the space as a Riemannian manifold. The depth functions allow one to naturally characterize most central or outlying matrices, but also provide a practical framework for inference in the context of samples of positive definite matrices. First, the desired properties of an intrinsic data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally fast pointwise and integrated data depth functions that satisfy each of these requirements and investigate several robustness and efficiency aspects. As an application, we construct depth-based confidence regions for the intrinsic mean of a sample of positive definite matrices, which is applied to the exploratory analysis of a collection of covariance matrices associated to a multicenter research trial
    • …
    corecore